Renewable Polymers and Renewable Carbon

Welcome to the National Non-Food Crops Centre’s 11th Newsletter

The total market share for renewable polymers is currently around 1% and the sector continues to grow. The speed of the industry’s development has been surprising. Renewable polyethylene can now be made from sugarcane, and it is indistinguishable from petrochemical polyethylene – at the time of the last renewable polymers newsletter in 2006, entirely renewable polyethylene seemed a remote prospect. Durables such as polyethylene will form an increasing proportion of the renewable polymers market. Consumers are becoming more aware of the issues surrounding plastics and sustainability. This year has also seen a great deal of media interest in plastics, particularly their disposal.

Renewable polymers don’t just have the advantage of a good environmental message: Renewable polymers work. Petrochemical polymers were developed with functionality in mind and renewable polymers can now fulfil many of the roles of conventional polymers – if renewables don’t perform consumers will not be interested.

The cost of crude oil and the pace of technical development have meant renewable feedstocks have become more and more favourable from an economic perspective. But renewable polymers also have two major advantages over petrochemical-derived polymers:

- Renewable carbon content
- Range of end of life options.

In this edition we introduce the concept of renewable carbon content. It is the renewable carbon in renewable polymers that provides a means to manage carbon in a sustainable manner. The amount of carbon in a product that comes from a renewable source, as opposed to a finite petrochemical source, can be measured. Inside, you can follow a carbon atom from the atmosphere, through a plant and into a renewable material, and learn how this renewable carbon can be quantified.

Dr John Williams, the NNFCC’s Technology Transfer Manager for renewable polymers, can be contacted at j.williams@nnfcc.co.uk

Building Sustainable Supply Chains: from crops to cashflow
The methods for determining the biobased content of materials with radiocarbon and isotope ratio mass spectrometry analysis are described in ASTM D6866. It is likely that, if a European standard is developed, it will follow this protocol.

Renewable Carbon Labelling?

Advertising renewable carbon content can be useful, particularly where a renewable polymer is indistinguishable from a conventional polymer. Renewable polyethylene, for example, can only be distinguished from conventional polyethylene by tests like those mentioned above. However, measuring renewable carbon content does not address the full environmental impact of a product. A label will not mean much on its own and it is important that it does not become inappropriately seized upon as a marketing tool. This test should be combined with other tools such as Life Cycle Assessment (LCA) to ensure the net environmental impact of renewable polymers is as low as possible.

Life Cycle Assessment of Renewable Polymers

LCA is an important tool for demonstrating the positive environmental effects of renewable polymers compared to conventional polymers. Currently when comparisons are made between renewable polymers and conventional polymers, a novel, relatively small scale product is being compared to a mature commodity, which can be an unfair comparison. It is important for LCAs to consider possible future optimisation of renewable polymers, or LCAs could inadvertently stifle the renewables industry. See Newsletter 9 for more information on LCA.

Food and Materials

It is possible that the sector will suffer the same accusations that have dogged the biofuel industry. Some (but not all) renewable polymers are made from raw materials that could also be used for food or feed e.g. maize. However, renewable polymers consume an extremely small percentage of the global harvest and currently have no effect on food prices, a situation that is unlikely to change. The demand for materials is small, so even if the industry expands considerably it will have little effect on the price of food.

Waste

The UK generates around 12.5 tonnes of municipal organic waste each year. About half of this is food waste - in the UK we throw away about one third of the food we buy. Most of this waste still goes to landfill, where it breaks down producing methane. The methane from biodegradables in landfill accounts for 40% of all UK methane emissions. The UK’s landfill diversion targets require the amount of municipal biodegradable waste being sent to landfill to fall by around 10 million tonnes by 2013.

A second waste problem the UK is tackling is packaging waste. The recycling rate for plastic packaging remains low at around 22%, reflecting the difficulty of dealing with contaminated plastic. At first these problems might seem unrelated, but both these waste streams could be capitalised on by using the appropriate renewable polymer for food packaging.

Using renewable food packaging could simplify the waste stream, divert waste from landfill and provide renewable low-carbon energy. The energy content of renewable polymers could be recovered by incineration, which would release renewable CO₂. It is possible that some renewable polymers could be compatible with Anaerobic Digestion (AD). AD is a process where bacteria digest biomass inside a sealed vessel producing biogas. Biogas can be used to provide heat and electricity but it can also be used as a road fuel. One tonne of food waste could provide 300 kwh of energy (for more information on AD, see our recent report on our website). This year the NNFCC is undertaking a project on the potential for anaerobic treatment of packaging waste.
The carbon released back into the atmosphere

<table>
<thead>
<tr>
<th>Traditional Polymers</th>
<th>Renewable Polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical recycling</td>
<td>✓</td>
</tr>
<tr>
<td>Chemical recycling</td>
<td>✓</td>
</tr>
<tr>
<td>Energy from Waste</td>
<td>✓</td>
</tr>
<tr>
<td>Landfill</td>
<td>✓</td>
</tr>
<tr>
<td>Anaerobic Digestion</td>
<td>✗</td>
</tr>
<tr>
<td>Composting</td>
<td>✗</td>
</tr>
</tbody>
</table>

References and Further Reading

- **NNFCC Renewable Polymers Thematic Working Group**
 www.nnfcc.co.uk/metadot/index.pl?id=3922;isa=Category;op=show

- **NNFCC Anaerobic Digestion FAQs**
 www.nnfcc.co.uk/metadot/index.pl?id=2192;isa=Category;op=show

- **European Bioplastics FAQ paper on bioplastics**
 www.european-bioplastics.org/index.php?id=191

- **BS EN 13432:2000 - Requirements for packaging recoverable through composting and biodegradation**

- **The Compostability Mark of European Bioplastics**
 www.dincertco.de/en/competencies/products/certification_in_the_environmental_field/the_compostability_mark_ibaw_e/index.html

- **Standard tests for determining biobased carbon content**
 www.astm.org

- **Green Alliance**
 www.green-alliance.org.uk/

- **WRAP**
 www.wrap.org.uk

- **Defra – Waste Strategy for England**
 www.defra.gov.uk/environment/waste/strategy/strategy07/index.htm

- **INCPEN - The Industry Council for Packaging and the Environment**
 www.incpen.org

- **www.plantic.co.uk**
- **www.innoviafilms.com**
- **www.novamont.com**
- **www.natureworksllc.com**
- **www.braskem.com**
NNFCC entered a team for the ‘Race for Life’. After many weeks of lunchtime training the ‘Carbon Angels’ were all able to jog or run around the 5km course even though we did not train for the torrential rain we ran in on the day! Thanks to everyone who supported us we raised £1,210 for Cancer Research UK.

Beyond Today’s Fuels, 23 September 2008, London
Registration is now open for this event. The NNFCC will present the findings of a series of Defra-funded studies which map a course for the development of a sustainable renewable fuels, chemicals and materials industry. This event will bring together the authors of each of these studies, together with representatives from the NNFCC to explain the key findings.

Green Supply Chain ‘08, 6–7 November 2008, York
Registration is now open for our fifth annual conference. To see the full programme and register, go to the Events page on our website.

Great Yorkshire Show
The NNFCC stand was buzzing with visitors at the 150th Great Yorkshire show. We brought renewables to life for kids, with a chance to crush some OSR and see how it can be made into biodiesel. Many visitors wanted to discuss the potential for anaerobic digestion with Lucy Hodsman. If you missed Lucy please contact us by phone or e-mail.